
Prepared for
Josh Stevens
Avara

Prepared by
Jasraj Bedi
Filippo Cremonese
Zellic

February 28, 2024

Family Wallet
iOS Application Security Assessment



FamilyWallet iOS Application Security Assessment February 28, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 6

2. Introduction 6

2.1. About FamilyWallet 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Origin spoofing 11

3.2. Improper URL handling with dangerous scheme 13

3.3. Improper URL handling with host suffix 17

3.4. Suboptimal symmetric key derivation 21

3.5. Broken LAContext canEvaluatePolicy authorization check 23

4. Discussion 24

4.1. Private keymaterial storage 25

Zellic © 2024 ← Back to Contents Page 2 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

4.2. Potential key leaks in screenshots 25

4.3. Address and transactions privacy 26

4.4. Sandboxed iframes 26

4.5. Unsafe handling of text input 27

5. ThreatModel 27

5.1. RPC handlers 28

6. Assessment Results 30

6.1. Disclaimer 31

Zellic © 2024 ← Back to Contents Page 3 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 31

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


FamilyWallet iOS Application Security Assessment February 28, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Avara from January 29th to February 23rd, 2024. During
thisengagement, Zellic reviewedFamilyWallet’s code for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to determine the following:

• The state of security of on-device at-rest keymaterial storage
• The state of security of keymaterial iCloud backups
• The state of security of keymaterial generation and derivation
• The state of security of on-device in-use keymaterial (limited)
• The state of security of the in-app browser RPC (confirmation screen bypasses)

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Dependencies — security concerns related to GRDB, WalletConnect, Amplitude, or any
other dependencies unrelated to signing or handling keymaterial.

• Transaction life cycle —wewill not be addressing all aspects of transaction handling. To
elaborate,wewill notactively investigatebugs thatmight result in, forexample, displaying
a transaction as confirmedwhen it is not, or vice versa.

• Reviews of low-level cryptography implementations.

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

During thisassessment, issuesregisteringanAppledeveloperaccountpreventedus fromtestingon
a physical device. This impacted our ability to perform live assessmentswith device-authentication
features enabled.

Zellic © 2024 ← Back to Contents Page 5 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

1.4. Results

During our assessment on the scoped Family Wallet codebase, we discovered five findings. No
critical issues were found. Three findings were of high impact and twowere of medium impact.

Additionally, Zellic recorded its notes and observations from the assessment for Avara’s benefit in
the Discussion section (4. ↗) at the end of the document.

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 3

■ Medium 2

■ Low 0

■ Informational 0

Zellic © 2024 ← Back to Contents Page 6 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

2. Introduction 2.1. About FamilyWallet

FamilyWallet is a self-custody Ethereumwallet designed for everyday use.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the codebase.

Business logic errors. Business logic is the heart of any application. We examine
the specifications and designs for inconsistencies, flaws, and weaknesses that create
opportunities for abuse. For example, these include problems like unrealistic tokenomics
or dangerous arbitrage opportunities. To the best of our abilities, time permitting, we also
review the logic to ensure that the code implements the expected functionality as specified
in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bugwithin the
application itself; rather, they are anunintendedconsequenceof the application’s interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an “Informational”
findinghigher thana “Low”finding. Thekeydistinction is that althoughcertain findingsmayhave the

Zellic © 2024 ← Back to Contents Page 7 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped codebase itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

2.3. Scope

The engagement involved a review of the following targets:

FamilyWallet Codebase

Repositories https://github.com/losfelizengineering/wallet-ios ↗
https://github.com/losfelizengineering/wallet-ios-core ↗
https://github.com/losfelizengineering/PINRemoteImage ↗

Versions wallet-ios: abe1d78615984662c3a9f1f80a443ec51b889f2a
wallet-ios-core: 0e1f258cb0435ff498ecb4e5904fdadae7a88188
PINRemoteImage: a606ac705a4caaee81c67396d3d4c06266f94c59

Program *.swift

Type swift

Platform iOS

2.4. Project Overview

Zellicwascontracted toperformasecurityassessmentwith twoconsultants fora totalof sixperson-
weeks. The assessment was conducted over the course of four calendar weeks.

Zellic © 2024 ← Back to Contents Page 9 of 31

https://github.com/losfelizengineering/wallet-ios
https://github.com/losfelizengineering/wallet-ios-core
https://github.com/losfelizengineering/PINRemoteImage


FamilyWallet iOS Application Security Assessment February 28, 2024

Contact Information

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Jasraj Bedi
Co-founder
jazzy@zellic.io ↗

Filippo Cremonese
Engineer
fcremo@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

January 29, 2024 Start of primary review period

January 30, 2024 Kick-off call

February 5, 2024 Review period paused

February 9, 2024 Review period resumed

February 23, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 31

mailto:chad@zellic.io
mailto:jazzy@zellic.io
mailto:fcremo@zellic.io


FamilyWallet iOS Application Security Assessment February 28, 2024

3. Detailed Findings 3.1. Origin spoofing

Target BrowserScriptMessageHandler::BrowserWebClientID

Category CodingMistakes Severity High

Likelihood High Impact High

Description

WhenanRPCrequest fromtheembeddedbrowser is received, thewallet needs to identify theorigin
of the request.

The origin is tracked by an object of type BrowserWebClientID.

struct BrowserWebClientID : Hashable, CustomStringConvertible {
private let value: String

private init(_ value: String) {
self.value = value

}

init?(from url: URL) {
guard let host = url.host else { return nil }

self.init(host)
}

init(from origin: WKSecurityOrigin) {
self.init(origin.host)

}
// ...

}

Regardless of whether the object is initialized from aURL or from aWKSecurityOrigin, only the host
part of the origin is considered, while the protocol and port are ignored.

Impact

This issue causes different origins (for example, https://somedapp.com:443 and
http://somedapp.com:8080) to be considered identical.

There are multiple ramifications due to this, but fundamentally this opens up multiple paths that

Zellic © 2024 ← Back to Contents Page 11 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

could allow an attacker to spoof the origin of an RPC request.

For example, an attacker on the same network of a victim user could perform a Man in the Middle
(“MITM”) attack and redirect any page the user visits to a fake plaintext clone of a dApp. Note that
the attacker can also do this by altering any HTTP page loaded to inject an iframe with a spoofed
origin. The code in the iframecouldwait until the page is in backgroundand theuser starts using the
legitimate dApp and then request a signing operation that would very convincingly be presented as
coming from the legitimate dApp.

The RPC message handler determines which webview has originated an RPC request by
matching the BrowserWebClientID constructed from the URL of each open webview with
the BrowserWebClientID constructed from the security origin of the frame (accessing mes-
sage.frameInfo.securityOrigin in BrowserWebScriptCoordinator::response).

This allows a request coming from a background tab or an iframe to be treated as if coming from a
different webview and potentially be presented as originating from a legitimate dApp.

Recommendations

Include protocol and port in the elements that are used to represent the origin or an RPC request.

Remediation

This issue was remediated in the following commits:

• b779c7954d5b020e2dfe5e2763376ff5bfc721ad

• 2b5aaec16e69466a112de48e3f27ec45b51dd3ce

Zellic © 2024 ← Back to Contents Page 12 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

3.2. Improper URL handling with dangerous scheme

Target FamilyWallet

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The in-app embedded browser does allow navigating to atypical URLs, such as ftp:// and
javascript:. This can be abused (also in conjunction with Finding 3.1. ↗) to spoof the origin of an
RPC request.

Impact

Specialjavascript: URLscouldbeabused tomisrepresent theoriginof asigning request—specif-
ically, if the in-app browser navigates to the following URL (even in a nested iframe).

javascript://somedapp.com/%0amalicious_code()

The malicious_code() would be executed, and if that code requested a wallet operation via the
RPC, the origin would be indistinguishable from https://somedapp.com:443. This is because when
parsing the URL according to RFC 3986, the host is somedapp.com, the protocol (schema) is
javascript, and the path is \nmalicious_code(). However, javascript: URLs have special treat-
ment in browsers, and the following JavaScript codewould be executed:

//somedapp.com/
malicious_code()

This exploit can also be initiated from Safari by abusing the built-in deep link functionality to open
the FamilyWallet in-app browser on a given URL. The attacker could trick the user into clicking on a
link that points to the following URL:

familywallet://browse?url=javascript:%2f%2fsomedapp.com%2f%250amalicious_code()

The following two screenshots show how a javascript: URL is misleadingly displayed as coming
from an incorrect origin.

Zellic © 2024 ← Back to Contents Page 13 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

The JavaScript code canpresent a signature request that does not explicitly present the origin of the
request; however, theURLbarwill display a spoofedorigin, andeven though thecodeused tocreate
the following screenshot does not attempt to recreate a legitimate dApp, it is possible to perfectly
recreate the appearance of a legitimate dApp instead of a white page.

Zellic © 2024 ← Back to Contents Page 14 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Zellic © 2024 ← Back to Contents Page 15 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Note that thebluecheckmark is aconsequenceofFinding3.3. ↗and that abusingjavascript: URLs
is also applicable in the context of Finding 3.1. ↗.

Recommendations

Reject navigation to URLs that are not HTTPS or HTTP. Consider rejecting or asking user confirma-
tion when navigating to HTTP URLs.

Remediation

This issue was remediated in the following commits:

• 238149578fe19dda3c904d30a651e8e9c1a9cbb1

Zellic © 2024 ← Back to Contents Page 16 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

3.3. Improper URL handling with host suffix

Target WCAppMappingsManager

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The in-appembeddedbrowser recognizes trusteddAppsbydownloadinga list ofwell-knownhosts.
The WCAppMappingsManager class is responsible for matching the URL of the origin of an RPC re-
quest to a known dApp.

The match is done by first attempting to match the precise URL against a list of known dApp URLs.
If this first check fails to find a match, all the existing known dApp hostnames are matched against
the URL that originated the RPC request. We speculate this is done to recognize subdomains.

private func getMappedInfo(from url: BaseURI) -> (baseURI: BaseURI, mapping:
WalletConnectAppMapping)? {
return self.mappings.withLock { mappings in

if let mappedInfo: WalletConnectAppMapping = mappings[url] {
return (url, mappedInfo)

} else {
for key in mappings.keys {

if url.value.hasSuffix(key.value), let mapping = mappings[key]
{

return (key, mapping)
}

}

return nil
}

}
}

This check canbebypassedbyusing adomain thatends like a knowndAppURL. For instance, an at-
tacker could spoof knowndapp.com by registering the domain attacker-knowndapp.com and trick-
ing the user to visit themalicious domain.

Zellic © 2024 ← Back to Contents Page 17 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Impact

This issue allows an attacker to spoof the origin of an RPC request. When the wallet recognizes a
knowndApp, it adds additional UI elements (e.g., a blue checkmark) that reassure the user about the
originof the requestandautomaticallypopulates thedAppname, icon, anddomain intoconfirmation
screens.

The following screenshot showswhat a spoofed RPC signing request would look like:

Zellic © 2024 ← Back to Contents Page 18 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Recommendations

Ideally, match known dApps against a strict list of hostnames. Alternatively, prepend a period char-
acter . to the list of known hostnames. Note that this does not fully resolve the issue, as an attacker

Zellic © 2024 ← Back to Contents Page 19 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

could leverage a subdomain takeover to spoof the origin of an RPC request. An attacker could also
performanMITMattackonauser and redirect them toaspoofedHTTPversionof a legitimatedApp.
Therefore, we also recommend to restrict known dAppmatching to secure (HTTPS) contexts.

Remediation

This issue was remediated in the following commits:

• 238149578fe19dda3c904d30a651e8e9c1a9cbb1

Zellic © 2024 ← Back to Contents Page 20 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

3.4. Suboptimal symmetric key derivation

Target CryptographicEngine

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

Family Wallet supports backup of private key material to iCloud. The app encrypts the private key
material using CryptoKit ChaChaPoly, with a 256-bit symmetric key derived from a user password.
The user password is required to pass some security requirements. [1]

The app supports three key derivation schemas:

• v1 — the symmetric key is derived from the SHA-256 hash of the user password, con-
verted to ASCII hex and truncated to the first 32 characters.

• v2 — the symmetric key is derived from the raw binary SHA-256 hash of the user pass-
word.

• v3— the symmetric key is derived with PBKDF2-SHA256, using 750k rounds and a fixed
salt.

When creating a new item, the app automatically uses the newest available schema; older schemas
are supported for backwards compatibility purposes.

All three schemas have weaknesses and do not adhere to common best practices. Furthermore,
there is no mechanism for reencrypting old backups that were created using an older and weaker
scheme.

Impact

The v1 and v2 schemas areweak towards brute-force attacks, as they only consist of a single round
of SHA-256. They are also vulnerable to rainbow tables, as there is no salt. The v1 schema unnec-
essarily truncates the real entropy of the key to 128 bits, since the output of SHA-256 is encoded as
ASCII hex and truncated from 64 to 32 bytes.

While the v3 schema is more resistant to brute-force attacks, it is still vulnerable to rainbow-table
attacks, because the salt is fixed.

1 The user password must be at least 10 characters, include a number and a special character, or be at least 15 characters
and include at least three different characters.

Zellic © 2024 ← Back to Contents Page 21 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Recommendations

Implement a randomsalt for each symmetric key. Consider using a stronger key-derivation function
such as Argon2id.

Remediation

This issue concerning a lack of randomized salt was remediated in the following commit:

• 9a31e844ed8c6fdecfe4bec00f4819e82f9496c9

Zellic © 2024 ← Back to Contents Page 22 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

3.5. Broken LAContext canEvaluatePolicy authorization check

Target LocalProtectedStore

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

FamilyWallet uses a check to LAContext.canEvaluatePolicy(..) to determine if a user presence
check is needed for a given action. The check relies on canEvaluatePolicy(..) returning true if
a device-authentication mode is configured. This check is used in multiple places in the codebase,
namely the LocalProtectedStore and RemoveWalletFlowViewController.

A problem with relying on the return value of canEvaluatePolicy(..) to determine if a device-
protection method has been configured on the device is that if that very same device auth method
hasbeen timedout via excessive attempts, thencanEvaluatePolicy(..) will begin to returnfalse.
This introducesabypass to this logic, allowinganattacker toget around this initial prompt toconfirm
user presence.

Depending on the circumstance, this can haveminimal impact. For example, in the LocalProtect-
edStore, assuming that a secret was generated and stored in the keychain when the device had an
authmethod configured, accessing that entry should still require the user to validate the authoriza-
tion requirements configured on the entry. However, this does not necessarily configure to entries
stored in the keychain earlier if they were stored before a device authorization method was config-
ured.

Notably, while LocalProtectedStore is partially protected via the keychain access control require-
ments configuredon the keychain entries, RemoveWalletFlowViewController is not so lucky. Using
this attack, an attacker is able to get around the control put in place to prevent inadvertant, or mali-
cious wallet removal.

Impact

This flaw in trusting the output of LAContext.canEvaluatePolicy(..) to determine if authentica-
tion is configured on the device can allow access to some secrets, if generated and saved when an
authentication method was previously not present. Additionally, it allows an attacker to bypass the
user presence requirements when removing a wallet.

Zellic © 2024 ← Back to Contents Page 23 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

Recommendations

Consider checking the returned error value for lockout conditions to determine if an operation
should or should not proceed.

Remediation

This issue was remediated in the following commits:

• 825723d0166e3ba02dd46900e582cbf82019d17b

• 8e781c122d462efd068aba2d5ff10eca8a6f6c90

Zellic © 2024 ← Back to Contents Page 24 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Private keymaterial storage

Family Wallet stores private key material using the keychain APIs provided by iOS. The wallet sup-
ports storingprivate keymaterial as a rawprivate key aswell as using themnemonic representation.

Access to the keychain entries is only allowed to Family Wallet, and other apps cannot access pri-
vate key material. If a PIN code or password are configured on the device, the wallet app requires
user presence tobeestablished. The access control policy is instantiated as such in LocalProtect-
edStore::getUserPresentAccessControl.

do {
// if this fails, we simply do not ask for access control
// this will fail when a passcode is not set.
try self.checkCanAuthenticateUserIsDeviceOwner(using: context)

} catch {
return .success(nil)

}

var error: Unmanaged<CFError>?
var access: SecAccessControl?

access = SecAccessControlCreateWithFlags(nil, kSecAttrAccessibleWhenUnlocked,
.userPresence, &error)

Wenote thatkSecAttrAccessibleWhenUnlockedallowskeychainentries tobebackedupand trans-
ferred to other devices. This means backups of the keychain made (e.g., via iTunes) will contain the
(encrypted) private key data. FamilyWallet developers could consider using the kSecAttrAccessi-
bleWhenUnlockedThisDeviceOnly access-control flag to prevent keychain entries from being able
to be backed up and transferred to other devices.

This was addressed in the following commit:

• 20abd9a02bd9da1711f2fc87ca97be3f82790336

4.2. Potential key leaks in screenshots

Atcertain times, suchaswhen importinganexistingwalletorwhenperformingamanualbackup, the
wallet displays private keys or seed phrases. The app does not prevent screenshots from recording

Zellic © 2024 ← Back to Contents Page 25 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

private keydetails. Auser could, voluntarily or involuntarily, takeascreenshotof theapplication. The
screenshot would be saved to the gallery and bemuchmore exposed.

Additionally, a screenshot of the application is automatically captured by iOSwhen the app is put in
background (andused todisplay theapp in theappswitcher). This screenshot is storedon thedevice
file system, and while not directly accessible on a nonjailbroken device, it does not have the same
security guarantees offered to an item stored in the iOS keychain. The screenshot is also displayed
by the app-switchermenu and can be seenwith possession of the unlocked device.

It is possible to prevent screenshots of sensitive information by implementing information hiding in
the sceneDidEnterBackground or applicationDidEnterBackground life cycle events.

This was addressed in the following commits:

• e1b4c43ce0e8db013305c863f2127e264755a772

4.3. Address and transactions privacy

We note that FamilyWallet uses RPC servers managed by the developers to push transactions and
obtain information about the network. Additionally, in order to perform some operations, the wallet
needs to authenticate to the backend using information that includes the hash of the user wallet
address. Devices perform a remote attestation using iOSDeviceCheck APIs in order to prove to the
backend that a real iOS device is performing the requests.

This implies that the Family backend gets some information that could potentially be correlated
to associate wallet addresses and transactions to the device and IP address that originated them.
While this does not constitute a vulnerability in and of itself, it is important that users are aware of
the potential privacy implications.

4.4. Sandboxed iframes

Preventing malicious JavaScript execution is critical to ensuring the security of the dApp browser
context. For NFTs, which are untrusted SVGs rendered in a WKWebView, we recommend placing
the untrusted content inside a sandboxed iframe. By leveraging a sandboxed iframe, browser-level
controls are leveraged toprevent JavaScript execution. If JavaScript execution is required for agiven
NFT, the sandbox attribute allows configurable control overwhat is and is not allowed in the context.
Additionally, by using a sandboxed iframe, the JavaScript executes in an isolated origin.

This was addressedwith an alternative approach in the following commit:

• 1b9a002f39853a5f415cdead06f56aa1136dfd39

Zellic © 2024 ← Back to Contents Page 26 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

4.5. Unsafe handling of text input

When handling sensitive information like seeds or private keys, additional care should be taken to
obscure and handle the sensitive information. We recommend evaluating if isSecureTextEntry
should be set on given UITextInputs. For example, it may make sense within the scope of the ap-
plication to enable this setting on the UITextViewwithin the IWInputPrivateKeyViewController.

The team accepted the risk here as it would have negative impacts on the user experience.

Zellic © 2024 ← Back to Contents Page 27 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

5. ThreatModel 5.1. RPC handlers

This section briefly documents the RPC endpoints exposed to dApps. The RPC endpoints provide
a subset of the standard Ethereum Provider interface also implemented by other wallets, making it
easily interoperable.

eth_chainId and net_version

These two RPC methods simply return the currently selected chain ID. As they do not constitute
sensitive information, they do not require any user permission.

eth_accounts

This only returns the currently selected account address (not the list of available accounts).

eth_requestAccounts

This returns the currently selected account and asks for authorization if it is not already granted.

personal_sign, eth_sign, eth_signMessage, eth_signTypedData,
eth_signTypedData_v1, eth_signTypedData_v3, and eth_signTypedData_v4

Thesemethods are handled by the same three classes.

• BrowserSignMessageRPCMethodHandler class; they are forwarded directly.
• WCSignMessageFlowHelper is a utility class; one of its responsibilities is parsing themes-
sage being signed to return a user-readable representation.

• WCSignMessageRequestViewController is the controller responsible for showing the
user a confirmation screenwith information about the data being signed. If the user con-
firms, it invokes a closure that in turn uses WCSignMessageFlowHelper::runSigning to
compute the required signature.

personal_ecRecover

This handler implements ecRecover for EIP-712 signatures. The actual cryptographic operations are
delegated to the third-party library function HDWalletFactory.recoverPublicAddressRawValue.

wallet_requestPermissions

This requests permission to interact with a wallet. The call chain is this:

• handleRequestPermissions

Zellic © 2024 ← Back to Contents Page 28 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

• context.connection.getUserPermissionToInteractWithWalletIfNeeded() ->
BrowserWebContext::Connection::getUserPermissionToInteractWithWalletIfNeeded

• self.root.getUserPermissionToInteractWithWalletIfNeeded(...) -> BrowserWe-
bContext::_RootConnection::getUserPermissionToInteractWithWalletIfNeeded

The call to _RootConnection::getUserPermissionToInteractWithWalletIfNeeded determines if
explicit permission is required. We find the name slightly confusing, aswhat is happening is that the
user is asked toselect awallet theywant to interactwith if theyhavepreviously selectedawallet that
was not theirs (read-only). Technically, the user is prompted if the currently selectedwallet does not
have the isPersonal attribute.

wallet_getPermissions

This returns thepermissionsgranted for the selectedwallet. This endpoint is read-only andcanonly
return eth_accounts if a wallet is selected or no permission at all.

eth_sendTransaction

This sends a transaction over theEthereumnetwork. Will open anew WCTransactionRequestView-
Controllerwith the transaction details as requested.

The from address must match context.connection.walletAddressToInteractWith, which vali-
dates the network as well as the address.

wallet_switchEthereumChain

This allows to switch the working chain — only supports a hardcoded set of chain IDs (Ethereum,
Polygon, Arbitrum, Optimism, Base). Notifies user via toast when switch occurs.

Relayed as-is RPCmethods

The followingmethod names are relayed as-is to an ETH RPC hosted on api.family.co:

• eth_gasPrice

• eth_getBalance

• eth_getBlockByHash

• eth_getBlockByNumber

• eth_estimateGas

• eth_getBalance

• eth_call

• eth_blockNumber

• eth_getLogs

• web3_clientVersion

Zellic © 2024 ← Back to Contents Page 29 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

• eth_getTransactionCount

• eth_getTransactionByHash

None of these APIs work with or expose sensitive data. The app is safe from injections that could
allow amalicious dApp to cause the wallet to perform a request to an arbitrary host or path.

Zellic © 2024 ← Back to Contents Page 30 of 31



FamilyWallet iOS Application Security Assessment February 28, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the Apple App Store.

During our assessment on the scoped FamilyWallet codebase, we discovered five findings. No crit-
ical issues were found. Three findings were of high impact and two were of medium impact. Avara
acknowledged all findings and implemented fixes.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 31 of 31


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Family Wallet
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Origin spoofing
	Improper URL handling with dangerous scheme
	Improper URL handling with host suffix
	Suboptimal symmetric key derivation
	Broken LAContext canEvaluatePolicy authorization check

	Discussion
	Private key material storage
	Potential key leaks in screenshots
	Address and transactions privacy
	Sandboxed iframes
	Unsafe handling of text input

	Threat Model
	RPC handlers

	Assessment Results
	Disclaimer


